COURSE OUTLINE

(1) GENERAL

SCHOOL	Sciences				
ACADEMIC UNIT	International Graduate Program in Biological Inorganic				
	Chemistry				
LEVEL OF STUDIES	Graduate				
COURSE CODE	2		SEMESTER	1	
COURSE TITLE	Physicochemical, Spectroscopic and Biochemical Methods in Bioinorganic Chemistry		ods		
if credits are awarded for separate co lectures, laboratory exercises, etc. If th	INDEPENDENT TEACHING ACTIVITIES if credits are awarded for separate components of the course, e.g. lectures, laboratory exercises, etc. If the credits are awarded for the phole of the course, give the weekly teaching hours and the total credits		WEEKLY TEACHINO HOURS	G CREDI	TS
				5	
Add rows if necessary. The organisation of teaching and the teaching methods used are described in detail at (d).					
COURSE TYPE	Scientific field				
general background,	Special background				
special background, specialised general knowledge, skills development	Specialised general knowledge				
PREREQUISITE COURSES:	No				
LANGUAGE OF INSTRUCTION	Greek / English				
and EXAMINATIONS:					
IS THE COURSE OFFERED TO	Yes				
ERASMUS STUDENTS					
COURSE WEBSITE (URL)	http://bic.chem.uoi.gr/BIC-En/physical-en.html				

(2) LEARNING OUTCOMES

Learning outcomes

The course learning outcomes, specific knowledge, skills and competences of an appropriate level, which the students will acquire with the successful completion of the course are described.

Consult Appendix A

- Description of the level of learning outcomes for each qualifications cycle, according to the Qualifications Framework of the European Higher Education Area
- Descriptors for Levels 6, 7 & 8 of the European Qualifications Framework for Lifelong Learning and Appendix B
- Guidelines for writing Learning Outcomes

The aim of the course is to familiarize students with the physicochemical, spectroscopic and biochemical methods used in Bioinorganic Chemistry. In addition, students are taught the basic principles of instruments operation used in chemical analysis, their applications, their characteristics and uses and to evaluate their results.

After completion of the course, students should be able to:

- know basic analytical / physicochemical methods and to choose the most appropriate method based on the properties of compounds.
- interpret spectra, identify characteristic peaks of infrared spectra and make structure and spectrum correlation.
- Organize the analysis by selecting the correct method, taking into account the relevant parameters (interferences) and making the necessary calculations.
- analyze by selecting the correct method, taking into account the relevant parameters (interferences) and making the necessary calculations.
- understand the basic meanings of spectrophotometry, laws and apply them to chemical

analysis.

- Understand the principle of samples preparation, protocol used, sampling patterns and samples' maintenance.
- be familiar with the basic methods of molecular structure determination and study of biomolecular properties in solution and solid state.

General Competences Taking into consideration the general competences that the degree-holder must acquire (as these appear in the Diploma		
Supplement and appear below), at which of the following does the course aim?		
Search for, analysis and synthesis of data and	Project planning and management	
information, with the use of the necessary technology	Respect for difference and multiculturalism	
Adapting to new situations	Respect for the natural environment	
Decision-making	Showing social, professional and ethical responsibility and	
Working independently	sensitivity to gender issues	
Team work	Criticism and self-criticism	
Working in an international environment	Production of free, creative and inductive thinking	
Working in an interdisciplinary environment		
Production of new research ideas	Others	
The general competences that the student should have acquired and to which the subject is		

The general competences that the student should have acquired and to which the subject is aimed are:

Search for, analysis and synthesis of data and information and decision making Translating the theory into practice Production of free, creative and inductive thinking

Working independently and team work

Acquire the appropriate theoretical base to allow further education at a doctoral level (theoretical and laboratory).

(3) SYLLABUS

Ultraviolet and Visible Spectroscopy, electronic transitions, radiative processes, energy diagram, internal conversion, conical intersection, structure determination and solvent effect

Fluorescence spectroscopy, Stokes Shift, fluorescence, experiments

, quenching, lifetime and quantum yield, fluorescence anisotropy

Infrared Spectroscopy,

Raman Spectroscopy

Mass spectroscopy. Ionization methods.

Electron spin resonance spectroscopy.

Spectroscopic methods for structure analysis such as mass spectrometry, nuclear magnetic resonance spectroscopy, infrared spectroscopy, and ultraviolet spectroscopy. Fundamentals of the NMR phenomenon, relationship between NMR spectra and molecular structure. Recording of routine spectra (1H and 13C), essentials of data processing (e.g., weighting functions). 1D NMR techniques: Decoupling, DEPT, relaxation measurement, magnetisation transfer, NOE difference spectra. 2D NMRtechniques: Homo- and heteronuclear correlation (COSY, TOCSY, HSQC, HMBC), measurement of the nuclear Overhauser effect (NOESY, ROESY).

Cyclic voltamentry

Mass spectroscopy ESI, FAB, FD, MALDI-TOF ionization procedures.

X-ray, Bragg's Law, • What's in a crystal?, space group symmetry, non-crystallographic symmetry, impossible symmetry, Practical Details, growing crystals, sample preparation, X-ray sources, data collection, Solving Structures from Diffraction Images

(4) TEACHING and LEARNING METHODS - EVALUATION

DELIVERY	Face to face	
Face-to-face, Distance learning, etc.		
USE OF INFORMATION AND	E-mail, PowerPoint	
COMMUNICATIONS TECHNOLOGY		
Use of ICT in teaching, laboratory education,		
communication with students		
TEACHING METHODS	Activity	Semester workload
The manner and methods of teaching are	Lectures	65
described in detail.		

Lectures, seminars, laboratory practice, fieldwork, study and analysis of bibliography, tutorials, placements, clinical practice, art workshop, interactive teaching, educational visits, project, essay writing, artistic creativity, etc. The student's study hours for each learning activity are given as well as the hours of non- directed study according to the principles of the ECTS	Essay writing Individual study, preparation	60 70
	Course total	195
STUDENT PERFORMANCE EVALUATION Description of the evaluation procedure Language of evaluation, methods of evaluation, summative or conclusive, multiple choice questionnaires, short-answer questions, open-ended questions, problem solving, written work, essay/report, oral examination, public presentation, laboratory work, clinical examination of patient, art interpretation, concerningother Specifically-defined evaluation criteria are given, and if and where they are accessible to students.	Student evaluation is done either by presenting to a committee of teachers and a public audience or by the final written examination. The final examination includes Multiple Choice, short-answer, open-ended, and Problem Solving Questions.	

(5) ATTACHED BIBLIOGRAPHY

Suggested Bibliography

 Infrared and Raman Spectra of Inorganic and Coordination Compounds: Part A: Theory and Applications in Inorganic Chemistry, Sixth Edition, Kazuo Nakamoto, Print ISBN:9780471743392, Online ISBN:9780470405840, DOI:10.1002/9780470405840, Wiley on line
Physical Methods for Chemists, Russel S. Drago, second edition, Surfside scientific publishers, 1992, USA.
Molecular Magnetism, Olivier Kahn
Crystal Structure Analysis. Principles and Practice Clegg, W., Blake, A.J., Gould, R.O. and Main, P.

5) Instrumental methods in Electrochemistry, Southampton Electrochemistry Group, Elis Horwood Ltd, 1990

6) Lectures Notes

Related academic journals:

Inorganic Chemistry, Dalton Transactions, Polyhedron, Inorganica Chimica Acta